

École Supérieure d'Ingénieurs des Travaux de la Construction

# INTERNATIONAL ENGLISH SEMESTER 2021 / 2022

# SUMMARY

| CLASS : ENGINEERING PROGRAM 2ND YEAR - TC4 |      |
|--------------------------------------------|------|
|                                            | PAGE |
| Environment                                | 3    |
| Hydraulics                                 | 4    |
| Building and energy transition             | 5    |
| Sustainable city                           | 6    |
| Environmental stakes in building           | 7    |
| Innovation and research project            | 8    |
| Works planning                             | 9    |
| Dynamics and structures of soils           | 10   |
| Bridge building project                    | 11   |
| Risk Management                            | 12   |
| Project management                         | 13   |
| BIM - Convergence SIG-BIM                  | 14   |
| BIM - Data management tools                | 15   |
| Asset management                           | 16   |
|                                            |      |

SUSTAINABLE BUILDING - TEACHING UE 5 3 ECTS Suject Environment Language : English Coefficient 1 Lectures - 26 h Automous work load Responsible persons : Joseph AKUNNA - Svetlana VUJOVIC

Prerequisites : Null.

· Surface water/groundwater : Water Quality Parameters (Physical, Chemical and Biological parameters)

 $\cdot$  Water pollution sources and impact : Nonpoint Source Pollution and Point Source Pollution

 $\cdot$  European policy and regulations on drinking water quality, Urban Waste Water Directive

· Drinking water treatment technologies : Study the principles and design of water treatment processes, including coagulation, flocculation, sedimentation, filtration, disinfection (chlorination, ozonation), advanced oxidation, and membrane filtration

· Municipal Wastewater treatment technologies : Pre-treatment, Primary treatment, Secondary treatment (Trickling filter and Activated sludge), and Tertiary treatment

 $\cdot$  Sludge treatment and disposal (overview)

· Waste, Contaminated Land & Air Pollution Regulations : European policy and regulations on land, waste management and the role of national environmental regulatory agencies. The EU Waste Management Hierarch

 $\cdot$  Waste Characterisation, Collection, Transport & Storage : Waste arisings by type, quantity, and disposal route. Collection and Transport options

•Waste Management & Treatment Technologies : Waste minimisation, re-use and recycling. Treatment technologies : Thermal (Incineration, Pyrolysis and Gasification); Anaerobic digestion and Composting. Landfill Technology

· Contaminated Land Management & Remediation. Ground investigation techniques. Assessment of hazards and risks. Treatment/Remediation methodologies and techniques

· Air Pollution process and impacts : Types, sources, and effects of airborne pollutants. Urban emissions, Chemistry and physics of common air pollutants, Emission inventories and standards, Enforcement and control measures. Analytical and monitoring techniques

#### Project

The project consists in comparing the emissions of gas effects between different energy solutions for buildings in different countries with different energy mix.



#### SUSTAINABLE BUILDING - TEACHING UE 5

Subject Hydraulics 3 ECTS Language : English Coefficient 1 Lectures - 25 h Automous work load - 5 h Responsible persons : **Eric BOER - Olof AKKERMAN** 

Prerequisites : Operational technical knowledge of mathematics

- Introduction into water supply, basic hydraulics
- Friction losses, pipe design

- Local losses, pump design, pump operation point, pumping stations

Project Distribution system and computer added design of drinking water supply nets



#### SUSTAINABLE BUILDING - TEACHING UE 5

Subject Hydraulics 3 ECTS Language : English Coefficient 1 Lectures - 25 h Automous work load - 5 h Responsible persons : **Eric BOER - Olof AKKERMAN** 

Prerequisites : Operational technical knowledge of mathematics

- Introduction into water supply, basic hydraulics
- Friction losses, pipe design

- Local losses, pump design, pump operation point, pumping stations

Project Distribution system and computer added design of drinking water supply nets



#### SUSTAINABLE BUILDING - TEACHING UNIT 5

Subject Building and energy transition 3 ECTS Language : FR/EN Coefficient 1 Lectures - 17 h Automous work load - 12 h Responsible person : **Bernard BLEZ** 

Prerequisites : Basic knowledge in mathematics

- Energy transition in buildings and cities: stakes and trends for the city of tomorrow (Green-house-effect gas, energy cost, air quality) in France, Europ, Asia, North America

- Energy approaches for buildings according to countries' energy mix: the place of gas, green gas, electricity, heat networks and their complementarity

- European rules and labels (BREEAM, HQE, BEPOS, Passivhaus, RE2020...)

- Energy solutions for buildings (advantages and drawbacks) :
  - Electrical solutions: heat pump, convector

Gas solutions (condensing boilers, mini-congenaration) and hybrid solutions.

- Renewable energy solutions for buildings: solar energy (BIPV), biomethane, renewable heat through energy mix networks
- Digital technologies serving the energy efficiency of buildings: IOT, AI, digital simulations  $\dots$
- Taking into account users
- Autonomous buildings: myth or reality? How to store energy
- Projects presentation

#### Project

The project consists in comparing the emissions of gas effects between different energy solutions for buildings in different countries with different energy mix.



SUSTAINABLE BUILDING - TEACHING UNIT UE 5 Subject Sustainable city 3 ECTS Language : FR/EN Coefficient 1 Lectures - 23 h Automous work load - 10 h Responsible person : Franck FAUCHEUX

Prerequisites : Knowledge in worksite organizatiion and building methods / Basics in sustainability

- What is a sustainable city?
- Studies before setting an urban development project: What is at stake?
- How to manage sustainable urban development
- Eiffage strategy: 3 field trips to sustainable worksites with discovery reports and final group presentations.



#### SUSTAINABLE BUILDING - TEACHING UNIT UE 5

Subject Environmental stakes in building 3 ECTS Language : FR/EN Coefficient 1 Lectures - 21 h Automous work load - 10 h Responsible persons : **Amor BEN FRAJ - Adélaïde FERAILLE - Myriam SAADÉ** 

Prerequisites : Knowledge in building materials / Reinforced concrete calculation- Dimensioning

- Course 1 (3h): concretes made of alternative materials ie: recycled granules
- Project session 1 (4h): Presentation of a building project with 2 dimensioning alternatives
- Course 2 (3h): Environmental and regulatory stakes in the building field
- Project session 2 (4h) : simplified environmental evalution
- Course 3 (3h): introduction to Lifecycle analysis
- Projet session 3 (4h) : simplified environmental evalution



#### ECO-FRIENDLY BUILDING - TEACHING UNIT UE 5

Subject Research and innovation project 3 ECTS Language : FR/EN Coefficient 2 Lectures - 7 h Automous work load - 30 h Responsible persons : **Sabrina PERLO - Thouraya SALEM - Svetlana VUJOVIC - Philippe PAVIS d'ESCURAC** 

Prerequisites : Basic knowledge in building engineering

- This project follows the project of bibliographical research of Semester 7
- Developing an application linked to the bibliographical research
- Analyzing and interpreting results

3 deliverables are expected at the end of the project (project advancements evaluated but not marked):

- A report
- An oral presentation
- A poster

#### Project

Topics are linked to 3 themes taught at ESITC Paris: Eco-friendly building, Agile building and 4.0 building and developed in ESITC Paris laboratories (LE3, LASSi et ESILab)

These projects can be suggested by laboratories, start-ups, companies, researcher- professors from ESITC Paris



# AGILE BUILDING - TEACHING UNIT UE 6

Subject Works planning 3 ECTS Language : FR/EN Coefficient 1 Lectures - 28 h Automous work load - 4 h Responsible person : **Jean GOH** 

Prerequisites : Works organization and planning

- Day 1

What is « planning »? Planning basics Introduction to IMSProject

- Day 2

Exercise MSProject / Practical work

- Day 3

Project on MSProject

- Day 4

Projet sur MSProject

- Day 5

Project advancement Project hand-in

# Project Planning works on computer



#### AGILE BUILDING - TEACHING UNIT UE 6

Subject Dynamics of Soils and Structures 3 ECTS Language : FR/EN Coefficient 1 Lectures - 28 h Automous work load - 5 h Responsible person : **Lucas LENTI - Jean-François SEMBLAT** 

Prerequisites : Basic knowledge in physics / Methods for solving differential equations

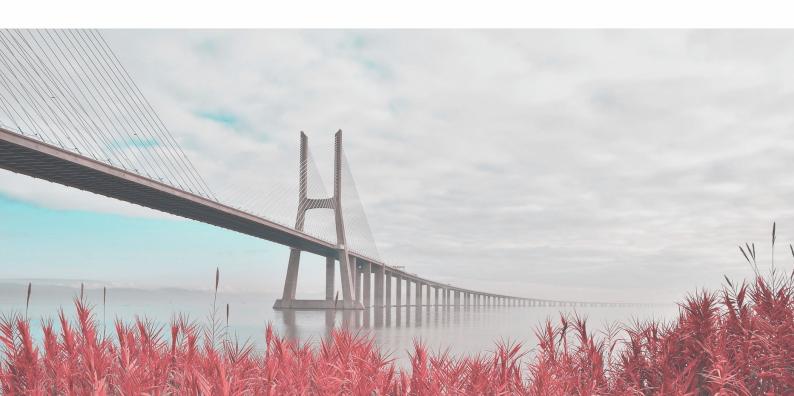
- Single Degree Of Freedom (SDOF) oscillator: equation of motion, free and forced vibrations, seismic response of SDOF system

- Seismic ground motion: response of layered soils: 1D transfer function, 1D/2D amplification

- Multiple Degree Of Freedom (MDOF) system: equation of motion, structure and properties of the stiffness matrix, lumped mass matrix, free and forced vibrations

- Seismic response of MDOF systems: equation of motion, modal decomposition, time integration, modal forces, maximum response, maximum forces

#### Project


- Introduction to the FEM software CESAR-LCPC
- Simple framed structure: closed form solution and numerical analysis
- Analysis of the seismic response of a 1D soil column: transfer function, ground motion
- Two DoFs structure: modal characterization in the lab
- Two DoFs structure: numerical analysis of the seismic response from 1D ground motion.



# AGILE BUILDING - TEACHING UNIT UE 6 Subject Bridge building project 2 ECTS Language : FR/EN Coefficient 1 Lectures - 15 h Responsible person : Erica CALATOZZO

Prerequisites : Knowing the main orders of magnitude of civil engineering structures

- Bearings and foundations. Building on shoring and falseworks
- Concrete bridges. Beam bridges
- Cantilever bridges. Truss bridge. Mixed bridges
- Big civil engineering structure



ADAPTABLE BUILDING - TEACHING UNIT UE 6 Subject Risk management 2 ECTS Language : FR/EN Coefficient 1 Lectures - 9 h Responsible person : Xavier TOUZE

Prerequisites : Basic principles regarding the building contracts and the main actors involved in a construction project

- This course will deliver knowledge of the risk exposure and advice for structuring an efficient risk management approach, with an understanding of the contractors' liabilities

- Specificity of a project
- Identifying project risks
- Quantifying the risk
- Treatment: accept, avoid, mitigate, share, transfer
- Contingency plan
- Insurance solutions



#### TE 4.0 BUILDING - ACHING UNIT UE 7

Subject Management de Projet 3 ECTS Language : FR/EN Coefficient 1 Lectures - 35 h Automous work load - 10 h Responsible person : **Hubert DULAUROY - Marc POUPINEL** 

Prerequisites : Project management in groups

- Definition and Lifecycle
- Initiating a project
- Carrying out and finalizing a project
- Management of the different parties
- Project managers 'approach

#### Project

Project management simulation. In groups of 4, students will have to develop an innovation project: cooperative habitat with low carbon footprint and positive energy



#### 4.0 BUILDING - TEACHING UNIT UE 7

Subject BIM -SIG-BIM Convergence 2 ECTS Language : FR/EN Coefficient 1 Lectures -12 h Automous work load - 5 h Responsible person : **Hervé HALBOUT** 

Prerequisites : Basic IT skills

- Basics :

SIG: from 2D to 3D SIG, 3D modelling, BIM/MN: Who and what for BIM and SIG stakes: convergence et complementarity Data structure and formats for integration Exchange formats: standards Software Impacted jobs

Project

Project SIG-BIM / Tools for information management Project mixing SIG, CAO/DAO and BIM/MN data



#### 4.0 BUILDING - TEACHING UNIT UE 7

Subject - BIM - Information management Tools 2 ECTS Language : FR/EN Coefficient 1 Lectures - 12 h Automous work load - 5 h Responsible person : **Benoît MARECHAL** 

#### Prerequisites : Basics CAD and BIM

- 3D Tools and collaborative methodology : Collaborative platform Platforms: Who and what for? Types of platforms: Cloud / Private / Public Trimble Quadri elements Structuring a collaborative modelling Task concept, open management of multi-editor data

#### Project

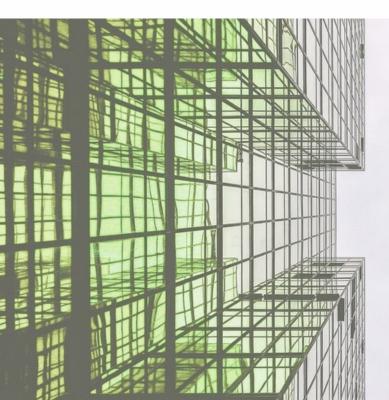
Project SIG-BIM / Tools for information management Project mixing SIG, CAO/DAO and BIM/MN data

- Using Quadri Server/ Quadri Desktop / Easy Access
- Integrating exported filtered data



#### 4.0 BUILDING - TEACHING UNIT UE 7

Subject - Asset Management 3 ECTS Language : FR/EN Coefficient 1 Lectures -18 h Automous work load - 10 h Responsible person : **Ahmed SBARTAI** 


Prerequisites : BIM and SIG-BIM tools

Introduction to asset management :

- Origin, birth and needs of asset management
- Assets and services
- Municipal world and urban planning
- Strategies and models of asset management over a life cycle
- Funding methods
- Directions and standards
- Risk management and optimized decision making

### Projet

Building asset Management plan using BIM tools









École Supérieure d'Ingénieurs des Travaux de la Construction 79 avenue Aristide Briand 94110 ARCUEIL

<u>www.esitc-paris.fr</u> <u>contact@esitc-paris.fr</u> 01.81.80.15.15